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Exercise 1

Let T > 0 be a positive real number and b € C! ([O,T] X ]Rd;]Rd) be bounded with
V.be L® ([0,T] x R%; My (R)).

Recall that given a measure p on R? and a measurable function ¢ we use the following
notation:

n(e)i= | ol duta). 1)
R4
Consider the Liouwville equation given by
f 2 (00 = e 0060 F), e[0T, w2 (R, o)
te ()]0 = ko (¥) Vip e CF (RY).

Suppose that M = {u| t € [0,T]} is a family of measures such that for each ¢ € [0, 7] the
measure /i is £¢ absolutely continuous (we will write equivalently £%-a.c., where £ is the

Lebesgue measure in d dimensions); moreover, assume that exists fy; € C* ([O, T] x ]Rd)
such that du; (2) = far (¢, 2) dz.

Under these assumptions, prove that M is a solution to (2) if and only if fj, is a classical
solution to

ouf + div, (bf) = 0, 5
ft,2)o=fu(0,2), VzeR%L

Remark. Notice that if d = 6, z = (z,v) € R3 x R® and b(t,z,v) = (v,E(t,7)) the
Liouville equation is written as

{ Oepe (V) = (v - Vb + E (t,2) - Vi), VEe[0,T], Yo e CL (RY), @
pe (V)]0 = o (¥), vy e CF (RY).

Proof. First suppose that M is a solution and fix ¢ € C° (Rd). As a consequence we have

de W (2) Oufar (t,2)dz = 04 (JRd Y (2) fu (8, 2) dz> - fRd b(t,2) Vb (2) far (¢, 2) d.

(5)
Given that fjs is C' and that 1) is compactly supported we can integrate by part to get
f W (2) dufar (1, 2) dz = f b(t,2)- Vo (2) far (1, 2) d= (6)
Rd Rd
= R V%ﬁ (Z) : b(ta Z) fM (ta Z) dz (7)
=~ | P v (t2) far (t.2)) d. ®



From the fact that v is arbitrary, we get that almost everywhere in z we get

Orfa (t,2) +div, (b(t,2) far (t,2)) = 0. 9)
From the fact that the function fj; is C' the equality is moreover pointwise and we get
that fys is a classical solution of (3).

On the other hand, if fa; is a classical solution, we can do the previous steps backwards
to get that the measure duy (z) := far (t,2) dz is a solution to the Liouville equation (2).

O
Exercise 2
Recall that if p € N, we defined in class
Py (]Rd) = {,u Borel measure| © > 0, u (Rd) = 1,f |z dp (z) < +oo}. (10)
Rd

Consider now a sequence of measures {i},cy € P1 (R?) and p € Py (RY). We say that
i converges to u weakly and we write pup — p as k — +oo if

kgrfoo y o (x) dug (x) = J;Rd o (x)du(x), Yo e Cy <Rd> , (11)

where C}, (Rd) denotes the space of bounded continuous functions.

Prove that the following properties are equivalent:

(i) p — p as k — +oo and

im ||l dug (2) = f 2] dp () (12)
k—+0o0 R4 R4

(ii) pr — p as k — +o0 and

limsupf || dpg (z) < J || dp () ; (13)
R4 R4

k—400

(iii) pp — p as k — 400 and

lim lim supj |z| duy, (x) = 0; (14)
R>+® kst Jjz|=R

(iv) For any ¢ € C (R?) such that there exists a positive constant C' with |¢ (z)| <
C (1 + |z|) for all x € R? we have

Jm | o @i @) - fRd*O(x) dy (). (15)



Proof. We will show the chain of implications (iv) = (i) = (ii) = (iii) = (iv) which will
prove the exercise.

To prove that (iv) = (i), we get that given that C}, (RY) = C (R?), (15) implies (11) and

therefore we have immediately that ux — p as k — +oo. Furthermore, |z| € C (Rd) and
trivially satisfies the condition in (iv), and therefore usging ¢ (z) = |z| in (15) we get (12).

To prove that (i) = (ii), is enough to notice that if the limit of a sequence exists, then
the limsup coincides with it and the equality in (12) implies the inequality in (13).

To prove that (i7) = (éi7), fix R > 0 and denote with B, the open ball of radius 7 centered
in 0 in R?. Using (13) we then have

lim supf |z| dug (z) = lim Supf |z| dpg (z) — lim supf |z| dp () (16)
|z|>=R R4 Br

k—+0 k—+00 k—+00

< | laldn (@) = timsup jBR 2] dpu (). (17)

k—+0

We want to use now the weak convergence to control the last term. Given that the
caracteristic function of the ball is not continuous, consider a family of functions f. €
Cy, (Rd), with € > 0 a positive real number, such that

XBp_. (¥) < f= () < X8 (2), (18)

where yp represent the indicator function of the measurable set E. Now, |z| f: (x) €
Cy (Rd), so from the fact that pup — p as k — +00 we get

—lim supj || dpg () = — limsupf |z| x By () dpg (x) (19)
k—+00 BR k—+0o0 Rd

< —timsup [ ol f- () dpe (2) (20)
k—+o JRd

- [ el @ d o) (1)
[ el @ i) = = [ eldu@. 22)
Rd

Br-—c

A

Given that |z| € L' (R% dp), we get that for any fixed £ > 0 we have

and therefore

lim sup limsupf || dpg (x) < J |z| dp (x) + lim sup <—f |z dp ($)> (24)
‘Jfl?R Rd R BR*E

R—+40w0 k—+400 —+0
= f |z| dp (x) + lim (—f |z| d (w)) =0. (25)
Rd R—+o© Bp_.

Therefore the limit on the left exists and is 0, implying (14)



To prove that (iii
with [ ()] < C(

i)
1
f so(az)dum)—f o (@) du (z) <
R4 R4

< Lhwmduk () - fBwa)du(x)

+C (1 + |2]) dpg (x) + C (1 + [x]) dp ()
|z|>R—e |z|=R

< | e@r@ e~ e@ 1@

+C (1 + |z]) dp, (x) + C (1 + [a]) dp ()

|x|=R—e |z|=R—e

<|[ e r@adn@ - [ ¢@f @

+C (1 + |z]) dpx (2) + C (1 + []) dp () -

|z|=R—e |z|=R—e
Proceeding analogously we can also get
| o@dn@ [ o du @<
R4 Rd
<[ @ @dn) - | o)1 (@) di (0
R4 R4

e (1+ o) dyag (&) + C (1+ [al) dy (2)

|z|=R—e |z|=R—e

<|[ e r@adn - [ ¢@f @)

+C (1 + |z|) dug () + C (1+ |z|) dp (z) .

|z|=R—e |z|=R—e

Combining the previous estimates we get

[ p@anto~ [ o du)<
<|[ e r@an - [ ¢@f @)
+C (1+ |z|) dug (z) + C (1+ |z|) dp (z) .
|z|=R—e |z|=R—e

Now ¢ f. € Cyp (Rd), so we can use the fact that pup — p as k — +00 to get

timsup| | @) du (o)~ | o) du (@) <
k—+o00 [JRE R4
< Climsupj (1+ |z|) dpg (x) + C (1 + |z|)du(z) .
k—+o0 Jjz|=R—c |z|>R—e

4

= (iv), we consider ¢ € C' (Rd) such that there exists a constant C'
+ |z|). Assume first that ¢ is nonnegative. Fix now ¢ > 0; we get that

(26)
(27)
(28)
(29)
(30)
(31)

(32)

(38)
(39)

(40)

(41)

(42)



The left hand side is independent on R, so we can perform the limit R — +00. Given that
|z| € L' (R%; dp) and using (14) we get

timsup| | @) du (o)~ | (@) duu (@) = (43)
k—+c0 [JRE R4
= lim sup lim sup f o (x)du(x) — J o () duy (x) (44)
R—+00 k—+w |[JRI R
< C'limsup lim supf (1+ |z|) dug (x) (45)
R—+w0 k—+ow J|z|=R—¢
+ Climsupj (1+ |z|)dp(z) = 0. (46)
R—+ow J|z|>R—¢

So for any ¢ € C (R?) such that there exists a constant C' with |¢ (z)] < C (1 + |z|) and
positive (15) is proven; for any generic ¢ € C (Rd) such that there exists a constant C
with | ()] < C (1 + |z|) now is enough to notice that ¢ = max {p,0} and p_ = p; —¢
we get

Y =Pr =P (47)
@+, p-€C (RY) (48)
psl <lpl <C(1+a]), (49)

so by linearity of integration and limit we get that (15) is true for a generic ¢; therefore
(iv) is true.

O]

Exercise 3

Recall that the space Lip (R?) is defined as the set of function ¢ such that lelipmaey <
+00, where

(@) — ¢ ()
. = Sup ——— »0
lelipmay %ye%d di (z,y) o
TFY

and where dj (-, -) is the euclidean distance between two points.

Prove that the function Wj : P (Rd) x P1 (Rd) — R defined for all pu, v e Py (Rd) as

Wi () = sup { () = v (9) | ¢ € Lip (R?), [lipiey < 1} (51)

defines a distance on P; (]Rd).

Proof. Recall that a distance on a set function X is a map d : X x X — [0,+00) such
that

(i) d(z,y) =0=z=y;



(ii) d(z,y) =d(y,z) for all z, y € X

(ii) d(z,y) <d(z,z) +d(z,y) for all z, y, z€ X.

We prove these properties one by one. We first notice that for any ¢ € Lip (]Rd) with
[l Liprey < 1 we get

o ()] O)] + e (2) =@ (0)] < [ (0)] + |@lLipway d1 (x,0) (52)

< g |
< e ()] + el ipray 2] < @ (0)] + |z]. (53)

Therefore for any u, v € Py (Rd) we get

p)=v(e) = | e@dute) = | @are) (54)
< 2 (0)] +f || dp (x) +f |z| dv () < +0o0 (55)
Rd R4

therefore we get that on the one hand Wi (u,v) < +00, on the other given that the
function constantly 0 is Lipschitz and HOHLip(Rd) = 0 < 1 then W (p,v) = 0, therefore

Wi Py (Rd) x P1 (Rd) — [0, 4+0). We now prove the properties of a distance.

(i)

(i)

If £ = v then W; (u,v) = 0 trivially. Suppose now that u, v € P; (]Rd) such
that Wi (u,v) = 0. Then let ¢ € Lip (RY) with lellLipray < 1. Clearly also —¢ €

Lip (]Rd); then we get

-+

() —v (@)l = £(ulp) —v(p) = n(te) —v(xp) < Wi (pv) =0,  (56)

therefore i (p) = v (¢) for all ¢ € Lip (R?) (in principle with lelip®aey < 1, but by
linearity of the integral this additional condition can be dropped).
Consider now a function 1 € C! (R?) such that ] 1 (gay = 1 and define ¥y (z) :=

M%) (Mz); for any measurable set E, define XE,M = XE * ¥p. On the one hand,
from the regularity of ¢5; we get that x g as is Lipschitz and that HXE,MHLOO(Rd) <

|lUnlpray = ¥l g1 @ay = 1. Moreover, xp,m — xg for M — +00 almost every-

where. Therefore using (56) and dominated convergence theorem we get that
p(B)= | dut@) = | xe@dute) = Jim [ e @)dn@ 67)

E R4 M—+00 Jrd
= 1 — 3 — 3 d
MIEEOO K (XE’M) Mlgr—il-oo g (XE’M) Mlgr—il-oo Rd XE.M (z) dv (z) (58)
=f XE () dv (x) =J dv(z) =v(E), (59)
R E

and therefore p = v.

The second property comes from the fact that if ¢ is Lipschitz with [ o]y, ge) < 1,
also —¢ is, therefore the two family on which we consider the supremum to get
Wi (i, v) and Wy (v, p) are identical and therefore Wy (u, v) = Wy (v, ).



(iif) Consider y, v, A€ Py (R?). We get that for any ¢ Lipschitz with lelipmay < 1 we
have

p(p) —v(p) =p(p) =A@ A(p) —v(p) <Wi(p, ) +Wi(Av)  (60)

where in the last step we used the definitions of Wy (p, A) and Wi (A, v). Taking the
supremum over ¢ we get the result.



