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Exercise 1

Let T ě 0 be a positive real number and b P C1
`

r0, T s ˆ Rd;Rd
˘

be bounded with
∇zb P L

8
`

r0, T s ˆ Rd;Md pRq
˘

.

Recall that given a measure µ on Rd and a measurable function ϕ we use the following
notation:

µ pϕq :“

ż

Rd

ϕ pxq dµ pxq . (1)

Consider the Liouville equation given by
"

Btµt pψq “ µt pb pt, ¨q ¨∇zψq , @t P r0, T s , @ψ P C8c
`

Rd
˘

,
µt pψq|t“0 “ µ0 pψq , @ψ P C8c

`

Rd
˘

.
(2)

Suppose that M “ tµt| t P r0, T su is a family of measures such that for each t P r0, T s the
measure µt is Ld absolutely continuous (we will write equivalently Ld-a.c., where Ld is the
Lebesgue measure in d dimensions); moreover, assume that exists fM P C1

`

r0, T s ˆ Rd
˘

such that dµt pzq “ fM pt, zq dz.

Under these assumptions, prove that M is a solution to (2) if and only if fM is a classical
solution to

"

Btf ` divz pbfq “ 0,
f pt, zq|t“0 “ fM p0, zq , @z P Rd.

(3)

Remark. Notice that if d “ 6, z “ px, vq P R3 ˆ R3 and b pt, x, vq “ pv,E pt, xqq the
Liouville equation is written as

"

Btµt pψq “ µt pv ¨∇xψ ` E pt, xq ¨∇vψq , @t P r0, T s , @ψ P C8c
`

Rd
˘

,
µt pψq|t“0 “ µ0 pψq , @ψ P C8c

`

Rd
˘

.
(4)

Proof. First suppose that M is a solution and fix ψ P C8c
`

Rd
˘

. As a consequence we have
ż

Rd

ψ pzq BtfM pt, zq dz “ Bt

ˆ
ż

Rd

ψ pzq fM pt, zq dz

˙

“

ż

Rd

b pt, zq ¨∇zψ pzq fM pt, zq dz.

(5)

Given that fM is C1 and that ψ is compactly supported we can integrate by part to get
ż

Rd

ψ pzq BtfM pt, zq dz “

ż

Rd

b pt, zq ¨∇zψ pzq fM pt, zq dz (6)

“

ż

Rd

∇zψ pzq ¨ b pt, zq fM pt, zq dz (7)

“ ´

ż

Rd

ψ pzqdivz pb pt, zq fM pt, zqq dz. (8)
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From the fact that ψ is arbitrary, we get that almost everywhere in z we get

BtfM pt, zq ` divz pb pt, zq fM pt, zqq “ 0. (9)

From the fact that the function fM is C1 the equality is moreover pointwise and we get
that fM is a classical solution of (3).

On the other hand, if fM is a classical solution, we can do the previous steps backwards
to get that the measure dµt pxq :“ fM pt, zq dz is a solution to the Liouville equation (2).

Exercise 2

Recall that if p P N, we defined in class

Pp

´

Rd
¯

:“

"

µ Borel measure| µ ě 0, µ
´

Rd
¯

“ 1,

ż

Rd

|x|p dµ pxq ă `8

*

. (10)

Consider now a sequence of measures tµkukPN Ď P1

`

Rd
˘

and µ P P1

`

Rd
˘

. We say that
µk converges to µ weakly and we write µk á µ as k Ñ `8 if

lim
kÑ`8

ż

Rd

ϕ pxq dµk pxq “

ż

Rd

ϕ pxq dµ pxq , @ϕ P Cb

´

Rd
¯

, (11)

where Cb

`

Rd
˘

denotes the space of bounded continuous functions.

Prove that the following properties are equivalent:

(i) µk á µ as k Ñ `8 and

lim
kÑ`8

ż

Rd

|x| dµk pxq “

ż

Rd

|x| dµ pxq ; (12)

(ii) µk á µ as k Ñ `8 and

lim sup
kÑ`8

ż

Rd

|x| dµk pxq ď

ż

Rd

|x| dµ pxq ; (13)

(iii) µk á µ as k Ñ `8 and

lim
RÑ`8

lim sup
kÑ`8

ż

|x|ěR
|x| dµk pxq “ 0; (14)

(iv) For any ϕ P C
`

Rd
˘

such that there exists a positive constant C with |ϕ pxq| ď
C p1` |x|q for all x P Rd we have

lim
kÑ`8

ż

Rd

ϕ pxq dµk pxq “

ż

Rd

ϕ pxq dµ pxq . (15)
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Proof. We will show the chain of implications pivq ñ piq ñ piiq ñ piiiq ñ pivq which will
prove the exercise.

To prove that pivq ñ piq, we get that given that Cb

`

Rd
˘

Ď C
`

Rd
˘

, (15) implies (11) and
therefore we have immediately that µk á µ as k Ñ `8. Furthermore, |x| P C

`

Rd
˘

and
trivially satisfies the condition in (iv), and therefore usging ϕ pxq “ |x| in (15) we get (12).

To prove that piq ñ piiq, is enough to notice that if the limit of a sequence exists, then
the limsup coincides with it and the equality in (12) implies the inequality in (13).

To prove that piiq ñ piiiq, fix R ą 0 and denote with Br the open ball of radius r centered
in 0 in Rd. Using (13) we then have

lim sup
kÑ`8

ż

|x|ěR
|x| dµk pxq “ lim sup

kÑ`8

ż

Rd

|x| dµk pxq ´ lim sup
kÑ`8

ż

BR

|x| dµk pxq (16)

ď

ż

Rd

|x| dµ pxq ´ lim sup
kÑ`8

ż

BR

|x| dµk pxq . (17)

We want to use now the weak convergence to control the last term. Given that the
caracteristic function of the ball is not continuous, consider a family of functions fε P
Cb

`

Rd
˘

, with ε ą 0 a positive real number, such that

χBR´ε
pxq ď fε pxq ď χBR

pxq , (18)

where χE represent the indicator function of the measurable set E. Now, |x| fε pxq P
Cb

`

Rd
˘

, so from the fact that µk á µ as k Ñ `8 we get

´ lim sup
kÑ`8

ż

BR

|x| dµk pxq “ ´ lim sup
kÑ`8

ż

Rd

|x|χBR
pxq dµk pxq (19)

ď ´ lim sup
kÑ`8

ż

Rd

|x| fε pxq dµk pxq (20)

“ ´

ż

Rd

|x| fε pxq dµ pxq (21)

ď ´

ż

Rd

|x|χBR´ε
pxq dµ pxq “ ´

ż

BR´ε

|x| dµ pxq . (22)

Given that |x| P L1
`

Rd; dµ
˘

, we get that for any fixed ε ą 0 we have

lim
RÑ`8

´

ż

BR´ε

|x| dµ pxq “ ´

ż

Rd

|x| dµ pxq (23)

and therefore

lim sup
RÑ`8

lim sup
kÑ`8

ż

|x|ěR
|x| dµk pxq ď

ż

Rd

|x| dµ pxq ` lim sup
RÑ`8

˜

´

ż

BR´ε

|x| dµ pxq

¸

(24)

“

ż

Rd

|x| dµ pxq ` lim
RÑ`8

˜

´

ż

BR´ε

|x| dµ pxq

¸

“ 0. (25)

Therefore the limit on the left exists and is 0, implying (14)
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To prove that piiiq ñ pivq, we consider ϕ P C
`

Rd
˘

such that there exists a constant C
with |ϕ pxq| ď C p1` |x|q. Assume first that ϕ is nonnegative. Fix now ε ą 0; we get that

ż

Rd

ϕ pxq dµk pxq ´

ż

Rd

ϕ pxq dµ pxq ď (26)

ď

ż

BR´ε

ϕ pxq dµk pxq ´

ż

BR

ϕ pxq dµ pxq (27)

` C

ż

|x|ěR´ε
p1` |x|q dµk pxq ` C

ż

|x|ěR
p1` |x|q dµ pxq (28)

ď

ż

Rd

ϕ pxq fε pxq dµk pxq ´

ż

Rd

ϕ pxq fε pxq dµ pxq (29)

` C

ż

|x|ěR´ε
p1` |x|q dµk pxq ` C

ż

|x|ěR´ε
p1` |x|q dµ pxq (30)

ď

ˇ

ˇ

ˇ

ˇ

ż

Rd

ϕ pxq fε pxq dµk pxq ´

ż

Rd

ϕ pxq fε pxq dµ pxq

ˇ

ˇ

ˇ

ˇ

(31)

` C

ż

|x|ěR´ε
p1` |x|q dµk pxq ` C

ż

|x|ěR´ε
p1` |x|q dµ pxq . (32)

Proceeding analogously we can also get

ż

Rd

ϕ pxq dµ pxq ´

ż

Rd

ϕ pxq dµk pxq ď (33)

ď

ż

Rd

ϕ pxq fε pxq dµ pxq ´

ż

Rd

ϕ pxq fε pxq dµk pxq (34)

` C

ż

|x|ěR´ε
p1` |x|q dµk pxq ` C

ż

|x|ěR´ε
p1` |x|q dµ pxq (35)

ď

ˇ

ˇ

ˇ

ˇ

ż

Rd

ϕ pxq fε pxq dµk pxq ´

ż

Rd

ϕ pxq fε pxq dµ pxq

ˇ

ˇ

ˇ

ˇ

(36)

` C

ż

|x|ěR´ε
p1` |x|q dµk pxq ` C

ż

|x|ěR´ε
p1` |x|q dµ pxq . (37)

Combining the previous estimates we get

ˇ

ˇ

ˇ

ˇ

ż

Rd

ϕ pxq dµ pxq ´

ż

Rd

ϕ pxq dµk pxq

ˇ

ˇ

ˇ

ˇ

ď (38)

ď

ˇ

ˇ

ˇ

ˇ

ż

Rd

ϕ pxq fε pxq dµk pxq ´

ż

Rd

ϕ pxq fε pxq dµ pxq

ˇ

ˇ

ˇ

ˇ

(39)

` C

ż

|x|ěR´ε
p1` |x|q dµk pxq ` C

ż

|x|ěR´ε
p1` |x|q dµ pxq . (40)

Now ϕfε P Cb

`

Rd
˘

, so we can use the fact that µk á µ as k Ñ `8 to get

lim sup
kÑ`8

ˇ

ˇ

ˇ

ˇ

ż

Rd

ϕ pxq dµ pxq ´

ż

Rd

ϕ pxq dµk pxq

ˇ

ˇ

ˇ

ˇ

ď (41)

ď C lim sup
kÑ`8

ż

|x|ěR´ε
p1` |x|q dµk pxq ` C

ż

|x|ěR´ε
p1` |x|q dµ pxq . (42)
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The left hand side is independent on R, so we can perform the limit RÑ `8. Given that
|x| P L1

`

Rd; dµ
˘

and using (14) we get

lim sup
kÑ`8

ˇ

ˇ

ˇ

ˇ

ż

Rd

ϕ pxq dµ pxq ´

ż

Rd

ϕ pxq dµk pxq

ˇ

ˇ

ˇ

ˇ

“ (43)

“ lim sup
RÑ`8

lim sup
kÑ`8

ˇ

ˇ

ˇ

ˇ

ż

Rd

ϕ pxq dµ pxq ´

ż

Rd

ϕ pxq dµk pxq

ˇ

ˇ

ˇ

ˇ

(44)

ď C lim sup
RÑ`8

lim sup
kÑ`8

ż

|x|ěR´ε
p1` |x|q dµk pxq (45)

` C lim sup
RÑ`8

ż

|x|ěR´ε
p1` |x|q dµ pxq “ 0. (46)

So for any ϕ P C
`

Rd
˘

such that there exists a constant C with |ϕ pxq| ď C p1` |x|q and
positive (15) is proven; for any generic ϕ P C

`

Rd
˘

such that there exists a constant C
with |ϕ pxq| ď C p1` |x|q now is enough to notice that ϕ` “ max tϕ, 0u and ϕ´ “ ϕ`´ϕ
we get

ϕ “ ϕ` ´ ϕ´ (47)

ϕ`, ϕ´ P C
´

Rd
¯

(48)

|ϕ˘| ď |ϕ| ď C p1` |x|q , (49)

so by linearity of integration and limit we get that (15) is true for a generic ϕ; therefore
(iv) is true.

Exercise 3

Recall that the space Lip
`

Rd
˘

is defined as the set of function ϕ such that }ϕ}LippRdq ă

`8, where

}ϕ}LippRdq :“ sup
x,yPRd

x‰y

|ϕ pxq ´ ϕ pyq|

d1 px, yq
, (50)

and where d1 p¨, ¨q is the euclidean distance between two points.

Prove that the function W1 : P1

`

Rd
˘

ˆ P1

`

Rd
˘

Ñ R defined for all µ, ν P P1

`

Rd
˘

as

W1 pµ, νq :“ sup
!

µ pϕq ´ ν pϕq | ϕ P Lip
´

Rd
¯

, }ϕ}LippRdq ď 1
)

. (51)

defines a distance on P1

`

Rd
˘

.

Proof. Recall that a distance on a set function X is a map d : X ˆ X Ñ r0,`8q such
that

(i) d px, yq “ 0 ô x “ y;
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(ii) d px, yq “ d py, xq for all x, y P X;

(iii) d px, yq ď d px, zq ` d pz, yq for all x, y, z P X.

We prove these properties one by one. We first notice that for any ϕ P Lip
`

Rd
˘

with
}ϕ}LippRdq ď 1 we get

|ϕ pxq| ď |ϕ p0q| ` |ϕ pxq ´ ϕ p0q| ď |ϕ p0q| ` }ϕ}LippRdq d1 px, 0q (52)

ď |ϕ p0q| ` }ϕ}LippRdq |x| ď |ϕ p0q| ` |x| . (53)

Therefore for any µ, ν P P1

`

Rd
˘

we get

µ pϕq ´ ν pϕq “

ż

Rd

ϕ pxq dµ pxq ´

ż

Rd

ϕ pxq dν pxq (54)

ď 2 |ϕ p0q| `

ż

Rd

|x| dµ pxq `

ż

Rd

|x| dν pxq ă `8 (55)

therefore we get that on the one hand W1 pµ, νq ă `8, on the other given that the
function constantly 0 is Lipschitz and }0}LippRdq “ 0 ď 1 then W1 pµ, νq ě 0, therefore

W1 : P1

`

Rd
˘

ˆ P1

`

Rd
˘

Ñ r0,`8q. We now prove the properties of a distance.

(i) If µ “ ν then W1 pµ, νq “ 0 trivially. Suppose now that µ, ν P P1

`

Rd
˘

such
that W1 pµ, νq “ 0. Then let ϕ P Lip

`

Rd
˘

with }ϕ}LippRdq ď 1. Clearly also ´ϕ P

Lip
`

Rd
˘

; then we get

|µ pϕq ´ ν pϕq| “ ˘ pµ pϕq ´ ν pϕqq “ µ p˘ϕq ´ ν p˘ϕq ďW1 pµ, νq “ 0, (56)

therefore µ pϕq “ ν pϕq for all ϕ P Lip
`

Rd
˘

(in principle with }ϕ}LippRdq ď 1, but by
linearity of the integral this additional condition can be dropped).

Consider now a function ψ P C1
c

`

Rd
˘

such that }ψ}L1pRdq “ 1 and define ψM pxq :“

Mdψ pMxq; for any measurable set E, define χE,M :“ χE ˚ ψM . On the one hand,
from the regularity of ψM we get that χE,M is Lipschitz and that }χE,M}L8pRdq

ď

}ψM}L1pRdq “ }ψ}L1pRdq “ 1. Moreover, χE,M Ñ χE for M Ñ `8 almost every-
where. Therefore using (56) and dominated convergence theorem we get that

µ pEq “

ż

E
dµ pxq “

ż

Rd

χE pxq dµ pxq “ lim
MÑ`8

ż

Rd

χE,M pxq dµ pxq (57)

“ lim
MÑ`8

µ pχE,M q “ lim
MÑ`8

ν pχE,M q “ lim
MÑ`8

ż

Rd

χE,M pxq dν pxq (58)

“

ż

Rd

χE pxq dν pxq “

ż

E
dν pxq “ ν pEq , (59)

and therefore µ “ ν.

(ii) The second property comes from the fact that if ϕ is Lipschitz with }ϕ}LippRdq ď 1,
also ´ϕ is, therefore the two family on which we consider the supremum to get
W1 pµ, νq and W1 pν, µq are identical and therefore W1 pµ, νq “W1 pν, µq.
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(iii) Consider µ, ν, λ P P1

`

Rd
˘

. We get that for any ϕ Lipschitz with }ϕ}LippRdq ď 1 we
have

µ pϕq ´ ν pϕq “ µ pϕq ´ λ pϕqλ pϕq ´ ν pϕq ďW1 pµ, λq `W1 pλ, νq (60)

where in the last step we used the definitions of W1 pµ, λq and W1 pλ, νq. Taking the
supremum over ϕ we get the result.
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