

Kinetic Equations

Solution to the Exercises

– 18.03.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $T \geq 0$ be a positive real number and $b \in C^1([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be bounded with $\nabla_z b \in L^\infty([0, T] \times \mathbb{R}^d; M_d(\mathbb{R}))$.

Recall that given a measure μ on \mathbb{R}^d and a measurable function φ we use the following notation:

$$\mu(\varphi) := \int_{\mathbb{R}^d} \varphi(x) d\mu(x). \quad (1)$$

Consider the *Liouville equation* given by

$$\begin{cases} \partial_t \mu_t(\psi) = \mu_t(b(t, \cdot) \cdot \nabla_z \psi), & \forall t \in [0, T], \forall \psi \in C_c^\infty(\mathbb{R}^d), \\ \mu_t(\psi)|_{t=0} = \mu_0(\psi), & \forall \psi \in C_c^\infty(\mathbb{R}^d). \end{cases} \quad (2)$$

Suppose that $M = \{\mu_t \mid t \in [0, T]\}$ is a family of measures such that for each $t \in [0, T]$ the measure μ_t is \mathcal{L}^d absolutely continuous (we will write equivalently \mathcal{L}^d -a.c., where \mathcal{L}^d is the Lebesgue measure in d dimensions); moreover, assume that exists $f_M \in C^1([0, T] \times \mathbb{R}^d)$ such that $d\mu_t(z) = f_M(t, z) dz$.

Under these assumptions, prove that M is a solution to (2) if and only if f_M is a classical solution to

$$\begin{cases} \partial_t f + \operatorname{div}_z(bf) = 0, \\ f(t, z)|_{t=0} = f_M(0, z), \quad \forall z \in \mathbb{R}^d. \end{cases} \quad (3)$$

Remark. Notice that if $d = 6$, $z = (x, v) \in \mathbb{R}^3 \times \mathbb{R}^3$ and $b(t, x, v) = (v, E(t, x))$ the Liouville equation is written as

$$\begin{cases} \partial_t \mu_t(\psi) = \mu_t(v \cdot \nabla_x \psi + E(t, x) \cdot \nabla_v \psi), & \forall t \in [0, T], \forall \psi \in C_c^\infty(\mathbb{R}^d), \\ \mu_t(\psi)|_{t=0} = \mu_0(\psi), & \forall \psi \in C_c^\infty(\mathbb{R}^d). \end{cases} \quad (4)$$

Proof. First suppose that M is a solution and fix $\psi \in C_c^\infty(\mathbb{R}^d)$. As a consequence we have

$$\int_{\mathbb{R}^d} \psi(z) \partial_t f_M(t, z) dz = \partial_t \left(\int_{\mathbb{R}^d} \psi(z) f_M(t, z) dz \right) = \int_{\mathbb{R}^d} b(t, z) \cdot \nabla_z \psi(z) f_M(t, z) dz. \quad (5)$$

Given that f_M is C^1 and that ψ is compactly supported we can integrate by part to get

$$\int_{\mathbb{R}^d} \psi(z) \partial_t f_M(t, z) dz = \int_{\mathbb{R}^d} b(t, z) \cdot \nabla_z \psi(z) f_M(t, z) dz \quad (6)$$

$$= \int_{\mathbb{R}^d} \nabla_z \psi(z) \cdot b(t, z) f_M(t, z) dz \quad (7)$$

$$= - \int_{\mathbb{R}^d} \psi(z) \operatorname{div}_z(b(t, z) f_M(t, z)) dz. \quad (8)$$

From the fact that ψ is arbitrary, we get that almost everywhere in z we get

$$\partial_t f_M(t, z) + \operatorname{div}_z(b(t, z) f_M(t, z)) = 0. \quad (9)$$

From the fact that the function f_M is C^1 the equality is moreover pointwise and we get that f_M is a classical solution of (3).

On the other hand, if f_M is a classical solution, we can do the previous steps backwards to get that the measure $d\mu_t(x) := f_M(t, z) dz$ is a solution to the Liouville equation (2).

□

Exercise 2

Recall that if $p \in \mathbb{N}$, we defined in class

$$\mathcal{P}_p(\mathbb{R}^d) := \left\{ \mu \text{ Borel measure} \mid \mu \geq 0, \mu(\mathbb{R}^d) = 1, \int_{\mathbb{R}^d} |x|^p d\mu(x) < +\infty \right\}. \quad (10)$$

Consider now a sequence of measures $\{\mu_k\}_{k \in \mathbb{N}} \subseteq \mathcal{P}_1(\mathbb{R}^d)$ and $\mu \in \mathcal{P}_1(\mathbb{R}^d)$. We say that μ_k converges to μ weakly and we write $\mu_k \rightharpoonup \mu$ as $k \rightarrow +\infty$ if

$$\lim_{k \rightarrow +\infty} \int_{\mathbb{R}^d} \varphi(x) d\mu_k(x) = \int_{\mathbb{R}^d} \varphi(x) d\mu(x), \quad \forall \varphi \in C_b(\mathbb{R}^d), \quad (11)$$

where $C_b(\mathbb{R}^d)$ denotes the space of bounded continuous functions.

Prove that the following properties are equivalent:

(i) $\mu_k \rightharpoonup \mu$ as $k \rightarrow +\infty$ and

$$\lim_{k \rightarrow +\infty} \int_{\mathbb{R}^d} |x| d\mu_k(x) = \int_{\mathbb{R}^d} |x| d\mu(x); \quad (12)$$

(ii) $\mu_k \rightharpoonup \mu$ as $k \rightarrow +\infty$ and

$$\limsup_{k \rightarrow +\infty} \int_{\mathbb{R}^d} |x| d\mu_k(x) \leq \int_{\mathbb{R}^d} |x| d\mu(x); \quad (13)$$

(iii) $\mu_k \rightharpoonup \mu$ as $k \rightarrow +\infty$ and

$$\lim_{R \rightarrow +\infty} \limsup_{k \rightarrow +\infty} \int_{|x| \geq R} |x| d\mu_k(x) = 0; \quad (14)$$

(iv) For any $\varphi \in C(\mathbb{R}^d)$ such that there exists a positive constant C with $|\varphi(x)| \leq C(1 + |x|)$ for all $x \in \mathbb{R}^d$ we have

$$\lim_{k \rightarrow +\infty} \int_{\mathbb{R}^d} \varphi(x) d\mu_k(x) = \int_{\mathbb{R}^d} \varphi(x) d\mu(x). \quad (15)$$

Proof. We will show the chain of implications $(iv) \Rightarrow (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$ which will prove the exercise.

To prove that $(iv) \Rightarrow (i)$, we get that given that $C_b(\mathbb{R}^d) \subseteq C(\mathbb{R}^d)$, (15) implies (11) and therefore we have immediately that $\mu_k \rightarrow \mu$ as $k \rightarrow +\infty$. Furthermore, $|x| \in C(\mathbb{R}^d)$ and trivially satisfies the condition in (iv), and therefore using $\varphi(x) = |x|$ in (15) we get (12).

To prove that $(i) \Rightarrow (ii)$, is enough to notice that if the limit of a sequence exists, then the limsup coincides with it and the equality in (12) implies the inequality in (13).

To prove that $(ii) \Rightarrow (iii)$, fix $R > 0$ and denote with B_r the open ball of radius r centered in 0 in \mathbb{R}^d . Using (13) we then have

$$\limsup_{k \rightarrow +\infty} \int_{|x| \geq R} |x| d\mu_k(x) = \limsup_{k \rightarrow +\infty} \int_{\mathbb{R}^d} |x| d\mu_k(x) - \limsup_{k \rightarrow +\infty} \int_{B_R} |x| d\mu_k(x) \quad (16)$$

$$\leq \int_{\mathbb{R}^d} |x| d\mu(x) - \limsup_{k \rightarrow +\infty} \int_{B_R} |x| d\mu_k(x). \quad (17)$$

We want to use now the weak convergence to control the last term. Given that the characteristic function of the ball is not continuous, consider a family of functions $f_\varepsilon \in C_b(\mathbb{R}^d)$, with $\varepsilon > 0$ a positive real number, such that

$$\chi_{B_{R-\varepsilon}}(x) \leq f_\varepsilon(x) \leq \chi_{B_R}(x), \quad (18)$$

where χ_E represent the indicator function of the measurable set E . Now, $|x| f_\varepsilon(x) \in C_b(\mathbb{R}^d)$, so from the fact that $\mu_k \rightarrow \mu$ as $k \rightarrow +\infty$ we get

$$-\limsup_{k \rightarrow +\infty} \int_{B_R} |x| d\mu_k(x) = -\limsup_{k \rightarrow +\infty} \int_{\mathbb{R}^d} |x| \chi_{B_R}(x) d\mu_k(x) \quad (19)$$

$$\leq -\limsup_{k \rightarrow +\infty} \int_{\mathbb{R}^d} |x| f_\varepsilon(x) d\mu_k(x) \quad (20)$$

$$= -\int_{\mathbb{R}^d} |x| f_\varepsilon(x) d\mu(x) \quad (21)$$

$$\leq -\int_{\mathbb{R}^d} |x| \chi_{B_{R-\varepsilon}}(x) d\mu(x) = -\int_{B_{R-\varepsilon}} |x| d\mu(x). \quad (22)$$

Given that $|x| \in L^1(\mathbb{R}^d; d\mu)$, we get that for any fixed $\varepsilon > 0$ we have

$$\lim_{R \rightarrow +\infty} -\int_{B_{R-\varepsilon}} |x| d\mu(x) = -\int_{\mathbb{R}^d} |x| d\mu(x) \quad (23)$$

and therefore

$$\limsup_{R \rightarrow +\infty} \limsup_{k \rightarrow +\infty} \int_{|x| \geq R} |x| d\mu_k(x) \leq \int_{\mathbb{R}^d} |x| d\mu(x) + \limsup_{R \rightarrow +\infty} \left(-\int_{B_{R-\varepsilon}} |x| d\mu(x) \right) \quad (24)$$

$$= \int_{\mathbb{R}^d} |x| d\mu(x) + \lim_{R \rightarrow +\infty} \left(-\int_{B_{R-\varepsilon}} |x| d\mu(x) \right) = 0. \quad (25)$$

Therefore the limit on the left exists and is 0, implying (14)

To prove that $(iii) \Rightarrow (iv)$, we consider $\varphi \in C(\mathbb{R}^d)$ such that there exists a constant C with $|\varphi(x)| \leq C(1 + |x|)$. Assume first that φ is nonnegative. Fix now $\varepsilon > 0$; we get that

$$\int_{\mathbb{R}^d} \varphi(x) d\mu_k(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu(x) \leq (26)$$

$$\leq \int_{B_{R-\varepsilon}} \varphi(x) d\mu_k(x) - \int_{B_R} \varphi(x) d\mu(x) \quad (27)$$

$$+ C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu_k(x) + C \int_{|x| \geq R} (1 + |x|) d\mu(x) \quad (28)$$

$$\leq \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu_k(x) - \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu(x) \quad (29)$$

$$+ C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu_k(x) + C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu(x) \quad (30)$$

$$\leq \left| \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu_k(x) - \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu(x) \right| \quad (31)$$

$$+ C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu_k(x) + C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu(x). \quad (32)$$

Proceeding analogously we can also get

$$\int_{\mathbb{R}^d} \varphi(x) d\mu(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu_k(x) \leq (33)$$

$$\leq \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu(x) - \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu_k(x) \quad (34)$$

$$+ C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu_k(x) + C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu(x) \quad (35)$$

$$\leq \left| \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu_k(x) - \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu(x) \right| \quad (36)$$

$$+ C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu_k(x) + C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu(x). \quad (37)$$

Combining the previous estimates we get

$$\left| \int_{\mathbb{R}^d} \varphi(x) d\mu(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu_k(x) \right| \leq (38)$$

$$\leq \left| \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu_k(x) - \int_{\mathbb{R}^d} \varphi(x) f_\varepsilon(x) d\mu(x) \right| \quad (39)$$

$$+ C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu_k(x) + C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu(x). \quad (40)$$

Now $\varphi f_\varepsilon \in C_b(\mathbb{R}^d)$, so we can use the fact that $\mu_k \rightarrow \mu$ as $k \rightarrow +\infty$ to get

$$\limsup_{k \rightarrow +\infty} \left| \int_{\mathbb{R}^d} \varphi(x) d\mu(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu_k(x) \right| \leq (41)$$

$$\leq C \limsup_{k \rightarrow +\infty} \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu_k(x) + C \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu(x). \quad (42)$$

The left hand side is independent on R , so we can perform the limit $R \rightarrow +\infty$. Given that $|x| \in L^1(\mathbb{R}^d; d\mu)$ and using (14) we get

$$\limsup_{k \rightarrow +\infty} \left| \int_{\mathbb{R}^d} \varphi(x) d\mu(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu_k(x) \right| = \quad (43)$$

$$= \limsup_{R \rightarrow +\infty} \limsup_{k \rightarrow +\infty} \left| \int_{\mathbb{R}^d} \varphi(x) d\mu(x) - \int_{\mathbb{R}^d} \varphi(x) d\mu_k(x) \right| \quad (44)$$

$$\leq C \limsup_{R \rightarrow +\infty} \limsup_{k \rightarrow +\infty} \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu_k(x) \quad (45)$$

$$+ C \limsup_{R \rightarrow +\infty} \int_{|x| \geq R-\varepsilon} (1 + |x|) d\mu(x) = 0. \quad (46)$$

So for any $\varphi \in C(\mathbb{R}^d)$ such that there exists a constant C with $|\varphi(x)| \leq C(1 + |x|)$ and positive (15) is proven; for any generic $\varphi \in C(\mathbb{R}^d)$ such that there exists a constant C with $|\varphi(x)| \leq C(1 + |x|)$ now is enough to notice that $\varphi_+ = \max\{\varphi, 0\}$ and $\varphi_- = \varphi_+ - \varphi$ we get

$$\varphi = \varphi_+ - \varphi_- \quad (47)$$

$$\varphi_+, \varphi_- \in C(\mathbb{R}^d) \quad (48)$$

$$|\varphi_{\pm}| \leq |\varphi| \leq C(1 + |x|), \quad (49)$$

so by linearity of integration and limit we get that (15) is true for a generic φ ; therefore (iv) is true.

□

Exercise 3

Recall that the space $\text{Lip}(\mathbb{R}^d)$ is defined as the set of function φ such that $\|\varphi\|_{\text{Lip}(\mathbb{R}^d)} < +\infty$, where

$$\|\varphi\|_{\text{Lip}(\mathbb{R}^d)} := \sup_{\substack{x, y \in \mathbb{R}^d \\ x \neq y}} \frac{|\varphi(x) - \varphi(y)|}{d_1(x, y)}, \quad (50)$$

and where $d_1(\cdot, \cdot)$ is the euclidean distance between two points.

Prove that the function $\mathcal{W}_1 : \mathcal{P}_1(\mathbb{R}^d) \times \mathcal{P}_1(\mathbb{R}^d) \rightarrow \mathbb{R}$ defined for all $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$ as

$$\mathcal{W}_1(\mu, \nu) := \sup \left\{ \mu(\varphi) - \nu(\varphi) \mid \varphi \in \text{Lip}(\mathbb{R}^d), \|\varphi\|_{\text{Lip}(\mathbb{R}^d)} \leq 1 \right\}. \quad (51)$$

defines a distance on $\mathcal{P}_1(\mathbb{R}^d)$.

Proof. Recall that a *distance* on a set function X is a map $d : X \times X \rightarrow [0, +\infty)$ such that

- (i) $d(x, y) = 0 \Leftrightarrow x = y$;

- (ii) $d(x, y) = d(y, x)$ for all $x, y \in X$;
- (iii) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$.

We prove these properties one by one. We first notice that for any $\varphi \in \text{Lip}(\mathbb{R}^d)$ with $\|\varphi\|_{\text{Lip}(\mathbb{R}^d)} \leq 1$ we get

$$|\varphi(x)| \leq |\varphi(0)| + |\varphi(x) - \varphi(0)| \leq |\varphi(0)| + \|\varphi\|_{\text{Lip}(\mathbb{R}^d)} d_1(x, 0) \quad (52)$$

$$\leq |\varphi(0)| + \|\varphi\|_{\text{Lip}(\mathbb{R}^d)} |x| \leq |\varphi(0)| + |x|. \quad (53)$$

Therefore for any $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$ we get

$$\mu(\varphi) - \nu(\varphi) = \int_{\mathbb{R}^d} \varphi(x) d\mu(x) - \int_{\mathbb{R}^d} \varphi(x) d\nu(x) \quad (54)$$

$$\leq 2|\varphi(0)| + \int_{\mathbb{R}^d} |x| d\mu(x) + \int_{\mathbb{R}^d} |x| d\nu(x) < +\infty \quad (55)$$

therefore we get that on the one hand $\mathcal{W}_1(\mu, \nu) < +\infty$, on the other given that the function constantly 0 is Lipschitz and $\|0\|_{\text{Lip}(\mathbb{R}^d)} = 0 \leq 1$ then $\mathcal{W}_1(\mu, \nu) \geq 0$, therefore $\mathcal{W}_1 : \mathcal{P}_1(\mathbb{R}^d) \times \mathcal{P}_1(\mathbb{R}^d) \rightarrow [0, +\infty)$. We now prove the properties of a distance.

- (i) If $\mu = \nu$ then $\mathcal{W}_1(\mu, \nu) = 0$ trivially. Suppose now that $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$ such that $\mathcal{W}_1(\mu, \nu) = 0$. Then let $\varphi \in \text{Lip}(\mathbb{R}^d)$ with $\|\varphi\|_{\text{Lip}(\mathbb{R}^d)} \leq 1$. Clearly also $-\varphi \in \text{Lip}(\mathbb{R}^d)$; then we get

$$|\mu(\varphi) - \nu(\varphi)| = \pm(\mu(\varphi) - \nu(\varphi)) = \mu(\pm\varphi) - \nu(\pm\varphi) \leq \mathcal{W}_1(\mu, \nu) = 0, \quad (56)$$

therefore $\mu(\varphi) = \nu(\varphi)$ for all $\varphi \in \text{Lip}(\mathbb{R}^d)$ (in principle with $\|\varphi\|_{\text{Lip}(\mathbb{R}^d)} \leq 1$, but by linearity of the integral this additional condition can be dropped).

Consider now a function $\psi \in C_c^1(\mathbb{R}^d)$ such that $\|\psi\|_{L^1(\mathbb{R}^d)} = 1$ and define $\psi_M(x) := M^d \psi(Mx)$; for any measurable set E , define $\chi_{E,M} := \chi_E * \psi_M$. On the one hand, from the regularity of ψ_M we get that $\chi_{E,M}$ is Lipschitz and that $\|\chi_{E,M}\|_{L^\infty(\mathbb{R}^d)} \leq \|\psi_M\|_{L^1(\mathbb{R}^d)} = \|\psi\|_{L^1(\mathbb{R}^d)} = 1$. Moreover, $\chi_{E,M} \rightarrow \chi_E$ for $M \rightarrow +\infty$ almost everywhere. Therefore using (56) and dominated convergence theorem we get that

$$\mu(E) = \int_E d\mu(x) = \int_{\mathbb{R}^d} \chi_E(x) d\mu(x) = \lim_{M \rightarrow +\infty} \int_{\mathbb{R}^d} \chi_{E,M}(x) d\mu(x) \quad (57)$$

$$= \lim_{M \rightarrow +\infty} \mu(\chi_{E,M}) = \lim_{M \rightarrow +\infty} \nu(\chi_{E,M}) = \lim_{M \rightarrow +\infty} \int_{\mathbb{R}^d} \chi_{E,M}(x) d\nu(x) \quad (58)$$

$$= \int_{\mathbb{R}^d} \chi_E(x) d\nu(x) = \int_E d\nu(x) = \nu(E), \quad (59)$$

and therefore $\mu = \nu$.

- (ii) The second property comes from the fact that if φ is Lipschitz with $\|\varphi\|_{\text{Lip}(\mathbb{R}^d)} \leq 1$, also $-\varphi$ is, therefore the two family on which we consider the supremum to get $\mathcal{W}_1(\mu, \nu)$ and $\mathcal{W}_1(\nu, \mu)$ are identical and therefore $\mathcal{W}_1(\mu, \nu) = \mathcal{W}_1(\nu, \mu)$.

(iii) Consider $\mu, \nu, \lambda \in \mathcal{P}_1(\mathbb{R}^d)$. We get that for any φ Lipschitz with $\|\varphi\|_{\text{Lip}(\mathbb{R}^d)} \leq 1$ we have

$$\mu(\varphi) - \nu(\varphi) = \mu(\varphi) - \lambda(\varphi) \lambda(\varphi) - \nu(\varphi) \leq \mathcal{W}_1(\mu, \lambda) + \mathcal{W}_1(\lambda, \nu) \quad (60)$$

where in the last step we used the definitions of $\mathcal{W}_1(\mu, \lambda)$ and $\mathcal{W}_1(\lambda, \nu)$. Taking the supremum over φ we get the result. \square